返回主站|会员中心|保存桌面|手机浏览
普通会员

河南尚和中知数据科技有限公司

市场调研,市场研究

网站公告
河南尚和中知商务咨询有限公司 是河南省专业的市场调查研究与执行公司。 公司团队有着多年的市场研究工作经历,主要负责全国各地的项目执行、管理及控制,为国内许多大、中城市的客户提供了大量的市场调查服务。本公司拥有一支经验丰富、纪律严明、业务熟练、技术精湛的员工队伍,对河南市场调查调查业的发展做出了不懈努力和积极贡献。
联系方式
  • 联系人:刘磊
  • 电话:0371-63866650
  • 邮件:shanghezhongzhi@163.com
  • 手机:13303855882
  • 传真:0371-63866653
站内搜索
 
荣誉资质
友情链接
首页 > 新闻中心 > 市场研究方法之回归分析
新闻中心
市场研究方法之回归分析
发布时间:2017-08-17        浏览次数:28        返回列表
回归分析
回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
方差齐性
线性关系
效应累加
变量无测量误差
变量服从多元正态分布
观察独立
模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量)
误差项独立且服从(0,1)正态分布。
现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。
研究一 个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法。又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,差有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。
回归分析的主要内容为:①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。②对这些关系式的可信程度进行检验。③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
回归分析的应用
相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
例如,如果要研究质量和用户满意度之间的因果关系,从实践意义上讲,产品质量会影响用户的满意情况,因此设用户满意度为因变量,记为Y;质量为自变量,记为X。根据图8-3的散点图,可以建立下面的线性关系:
Y=A+BX+§
式中:A和B为待定参数,A为回归直线的截距;B为回归直线的斜率,表示X变化一个单位时,Y的平均变化情况;§为依赖于用户满意度的随机误差项。
在SPSS软件里可以很容易地实现线性回归,回归方程如下:
y=0.857+0.836x 
回归直线在y轴上的截距为0.857、斜率0.836,即质量每提高一分,用户满意度平均上升0.836分;或者说质量每提高1分对用户满意度的贡献是0.836分。
740)this.width=740">
上面所示的例子是简单的一个自变量的线性回归问题,在数据分析的时候,也可以将此推广到多个自变量的多元回归,具体的回归过程和意义请参考相关的统计学书籍。此外,在SPSS的结果输出里,还可以汇报R2,F检验值和T检验值。R2又称为方程的确定性系数(coefficient of determination),表示方程中变量X对Y的解释程度。R2取值在0到1之间,越接近1,表明方程中X对Y的解释能力越强。通常将R2乘以100%来表示回归方程解释Y变化的百分比。F检验是通过方差分析表输出的,通过显著性水平(significant level)检验回归方程的线性关系是否显著。一般来说,显著性水平在0.05以下,均有意义。当F检验通过时,意味着方程中至少有一个回归系数是显著的,但是并不一定所有的回归系数都是显著的,这样就需要通过T检验来验证回归系数的显著性。同样地,T检验可以通过显著性水平或查表来确定。在上面所示的例子中,各参数的意义如表8-2所示。
表8-2 线性回归方程检验指标 显著性水平 意义 
R 0.89 “质量”解释了89%的“用户满意度”的变化程度
F 276.82 0.001 回归方程的线性关系显著 
T 16.64 0.001 回归方程的系数显著 
示例 SIM手机用户满意度与相关变量线性回归分析
我们以SIM手机的用户满意度与相关变量的线性回归分析为例,来进一步说明线性回归的应用。从实践意义讲上,手机的用户满意度应该与产品的质量、价格和形象有关,因此我们以“用户满意度”为因变量,“质量”、“形象”和“价格”为自变量,作线性回归分析。利用SPSS软件的回归分析,得到回归方程如下:
用户满意度=0.008×形象+0.645×质量+0.221×价格
对于SIM手机来说,质量对其用户满意度的贡献比较大,质量每提高1分,用户满意度将提高0.645分;其次是价格,用户对价格的评价每提高1分,其满意度将提高0.221分;而形象对产品用户满意度的贡献相对较小,形象每提高1分,用户满意度仅提高0.008分。
方程各检验指标及含义如下:
指标 显著性水平 意义 
R2 0.89 “质量”和“形象”解释了89%的“用户满意度”的变化程度 
F 248.53 0.001 回归方程的线性关系显著 
T(形象) 0.00 1.000 “形象”变量对回归方程几乎没有贡献 
T(质量) 13.93 0.001 “质量”对回归方程有很大贡献 
T(价格) 5.00 0.001 “价格”对回归方程有很大贡献 
从方程的检验指标来看,“形象”对整个回归方程的贡献不大,应予以删除。所以重新做“用户满意度”与“质量”、“价格”的回归方程如下:
用户满意度=0.645×质量+0.221×价格
对于SIM手机来说,质量对其用户满意度的贡献比较大,质量每提高1分,用户满意度将提高0.645分;用户对价格的评价每提高1分,其满意度将提高0.221分(在本示例中,因为“形象”对方程几乎没有贡献,所以得到的方程与前面的回归方程系数差不多)。
方程各检验指标及含义如下:
指标 显著性水平 意义 
R 0.89 “质量”和“形象”解释了89%的“用户满意度”的变化程度 
F 374.69 0.001 回归方程的线性关系显著 
T(质量) 15.15 0.001 “质量”对回归方程有很大贡献 
T(价格) 5.06 0.001 “价格”对回归方程有很大贡献 
分享按钮